
 API, HTTP - Interface Specification

Revision: 1.1
Date: 2007-September-14

TABLE OF CONTENTS
• DOCUMENT HISTORY
• 1 OVERVIEW

o 1.1 Product and firmware versions
• 2 REFERENCES
• 3 DEFINITIONS

o 3.1 General notations
 3.1.1 General abbreviations
 3.1.2 Style convention
 3.1.3 General CGI URL syntax and parameters
 3.1.4 Parameter value convention

• 4 INTERFACE SPECIFICATION
o 4.1 Server responses

 4.1.1 HTTP status codes
• 5 API GROUPS

o 5.1 General
 5.1.1 Update and list parameters and their values

 5.1.1.1 List parameters
 5.1.1.2 List output format
 5.1.1.3 Update parameters

 5.1.2 Hard factory default
 5.1.3 Backup
 5.1.4 Restore
 5.1.5 Firmware upgrade
 5.1.6 Reboot server

o 5.2 JPEG/MJPEG/MPEG-4
 5.2.1 JPEG image request
 5.2.2 JPEG image (snapshot) CGI request
 5.2.3 JPEG image response
 5.2.4 MJPG video request
 5.2.5 MJPG video response

 5.2.6 MPEG-4 video request
 5.2.7 MPEG-4 video response

o 5.3 PTZ
 5.3.1 PTZ set
 5.3.2 PTZ configuration

o 5.4 Motion Detection
 5.4.1 Update the Motion Detection parameters
 5.4.2 List the Motion Detection parameters

o 5.5 I/O
 5.5.1 I/O control

 5.5.1.1 Input
 5.5.1.2 Output

o 5.6 Audio data transmit

DOCUMENT HISTORY

Version Date Comment

1.1 2007-Sep-14 Initial version

1 OVERVIEW
This document specifies the external HTTP-based application programming interface of the
camera and video servers with firmware version 0.3.14 and above.

The HTTP-based video interface provides the functionality for requesting single and multi-
part images and for getting and setting internal parameter values. The image and CGI-
requests are handled by the built-in Web server in the camera and video servers.

1.1 Product and firmware versions

The support for the HTTP API is product and firmware dependent. Please refer to the
Release Notes for the actual product for compliance information.

2 REFERENCES
HTTP protocol

• Hypertext Transfer Protocol -- HTTP/1.0

3 DEFINITIONS
This section contains information on general usage of this document.

http://www.w3.org/Protocols/HTTP/1.0/spec

3.1 General notation

3.1.1 General abbreviations

The following abbreviations are used throughout this document

CGI Common Gateway Interface - a standardized method of communication between a
client (e.g. a web browser) and a server (e.g. a web server).

TBD To be done/designed - signifies that the referenced section/subsection/entity is
intended to be specified, but has not reached a level of maturity to be public at this
time.

N/A Not applicable - a feature/parameter/value is of no use in a specific task
URL RFC 1738 describes the syntax and semantics for a compact string representation for a

resource available via the Internet. These strings are called "Uniform Resource
Locators" (URLs).

URI A Uniform Resource Identifier (URI) is a compact string of characters for identifying
an abstract or physical resource. RFC 2396 describes the generic syntax of URI.

3.1.2 Style convention

In URL syntax and in descriptions of CGI parameters, text in italics within angle brackets
denotes content that should be replaced with either a value or a string. When replacing the
text string, the angle brackets must also be replaced. An example of this is the description of
the name for the server, denoted with <servername> in the URL syntax description below,
which is replaced with the string myserver in the URL syntax example, also shown below.

URL syntax is written with the word "Syntax:" shown in bold face, followed by a box with
the referred syntax, as shown below. The name of the server is written as <servername>.
This is intended to be replaced with the name of the actual server. This can either be a name,
e.g. "thecam" or "thecam.adomain.net" or the associated IP number for the server, e.g.
192.168.1.100.

Syntax:

http://<servername>/jpg/image.jpg

A description of returned data is written with "Return:" in bold face, followed by the returned
data in a box. All data returned as HTTP-formatted, i.e. starting with the string HTTP, is line-
separated with a Carriage Return and Line Feed (CRLF) printed as \r\n.

Return:

HTTP/1.0 <HTTP code> <HTTP text>\r\n

http://www.faqs.org/rfcs/rfc1738.html
http://www.faqs.org/rfcs/rfc2396.html

description and a light grey box with the example.

Example: Request default image.

http://myserver/jpg/image.jpg

Examples of what can be returned by the server from a request are written with "Example:"
in bold face, followed by a short description and a light grey box with an example of the
returned data.

Example: Returned data after a successful request.

HTTP/1.0 200 Ok\r\n

3.1.3 General CGI URL syntax and parameters

CGI URLs are written in lower-case. CGI parameters are written in lower-case and as one
word. When the CGI request includes internal camera parameters, the internal parameters
must be written exactly as named in the camera or video server. The CGIs are organized in
function related directories under the cgi-bin directory. The file extension of the CGI is
required.

Syntax:

http://<servername>/cgi-bin/<subdir>[/<subdir>...]/<cgi>
[?<parameter>=<value>[&<parameter>=<value>...]]

Example: List the Network parameters.

http://<servername>/cgi-bin/operator/param?action=list&group=Network

3.1.4 Parameter value convention

In tables defining CGI parameters and supported parameter values, the default value for
optional parameters is system configured.

4 INTERFACE SPECIFICATION

4.1 Server responses

4.1.1 HTTP status codes

The built-in Web server uses the standard HTTP status codes.

Return:

HTTP/1.0 <HTTP code> <HTTP text>\r\n

with the following HTTP code and meanings

HTTP code HTTP text Description

200 OK The request has succeeded, but an
application error can still occur, which will
be returned as an application error code.

204 No Content The server has fulfilled the request, but
there is no new information to send back.

302 Moved Temporarily The server redirects the request to the URI
given in the Location header.

400 Bad Request The request had bad syntax or was
impossible to fulfill.

401 Unauthorized The request requires user authentication or
the authorization has been refused.

404 Not Found The server has not found anything matching
the request.

409 Conflict The request could not be completed due to
a conflict with the current state of the
resource.

500 Internal Error The server encountered an unexpected
condition that prevented it from fulfilling
the request.

503 Service Unavailable The server is unable to handle the request
due to temporary overload.

Example: Request includes invalid file names.

HTTP/1.0 404 Not Found\r\n

5 API GROUPS
To make it easier for developers to get an idea of which API requests are supported for
different products, the requests have been grouped together. Information about which groups
are supported can be found in the product-specific release notes document, available for
download from the web site.

5.1 General

The requests specified in the General section are supported by all video products with
firmware version 4.00 and above.

5.1.1 Update and list parameters and their values

Note:

• These requests have different security levels. The security level for each parameter is
specified in the parameter document.

• The URL must follow the standard way of writing a URL, (RFC 2396: Uniform
Resource Identifiers (URI) Generic Syntax); that is, spaces and other reserved
characters (";", "/", "?", ":", "@", "&", "=", "+", "," and "$") within a <parameter> or
a <value> must be replaced with %<ASCII hex>. For example, in the string My
camera, the space will have to be replaced with %20, My%20camera.

Method: GET/POST

Syntax:

http://<servername>/cgi-bin/view/param?
<parameter>=<value>[&<parameter>=<value>...]
http://<servername>/cgi-bin/operator/param?
<parameter>=<value>[&<parameter>=<value>...]
http://<servername>/cgi-bin/admin/param?
<parameter>=<value>[&<parameter>=<value>...]

with the following parameter and values

<parameter>=<value> Values Description

action=<string>

add, remove,
update or list

Specifies the action to take. Depending on
this parameter, various parameters may be
set, as described in the following sections.

5.1.1.1 List parameters

Syntax:

http://www.faqs.org/rfcs/rfc2396.html

http://<servername>/cgi-bin/view/param?action=list
[&<parameter>=<value>...]
http://<servername>/cgi-bin/operator/param?action=list
[&<parameter>=<value>...]
http://<servername>/cgi-bin/admin/param?action=list
[&<parameter>=<value>...]

with the following parameter and values

<parameter>=<value> Values Description

group=<string>[,<string>...] <group[.name]>[,<group[.name]>...] Returns the value
of the camera
parameter named
<group>.<name>.
If <name> is
omitted, all the
parameters of the
<group> are
returned.

The camera
parameters must be
entered exactly as
they are named in
the camera or video
server.

Wildcard (*) can be
used when listing
parameters. See
example below.

If this parameter is
omitted, all
parameters in the
device are returned.

responseformat rfc Get the HTTP
response format
according to
standard.

Response format:
HTTP/1.0 200
OK\r\n
Content-Type:
text/plain\r\n
\r\n

<parameter pair>

Example: List the Network parameters.

http://myserver/cgi-bin/admin/param?action=list&group=Network

5.1.1.2 List output format

HTTP/1.0 200 OK\r\n
Content-Type: text/plain\n
\n
<parameter pair>

where <parameter pair> is

<parameter>=<value>\n
[<parameter pair>]

Example: Network query response.
HTTP/1.0 200 OK\r\n
Content-Type: text/plain\n
\n
root.Network.IPAddress=191.168.1.100\n
root.Network.SubnetMask=255.255.255.0\n

If the CGI request includes an invalid parameter value, the server returns an error message.
Return:
HTTP/1.0 200 OK\r\n
Content-Type: text/plain\n
\n
Error: <description>\n

5.1.1.3 Update parameters

Syntax:

http://<servername>/cgi-bin/operator/param?action=update

[&<parameter>=<value>...]
http://<servername>/cgi-bin/admin/param?action=update
[&<parameter>=<value>...]

with the following parameters and values

<parameter>=<value> Values Description

<string>=<string> <group.name>=<value>

Assigns <value> to the parameter
<group.name>.

The <value> must be URL-encoded
when it contains non-alphanumeric
characters.

The camera parameters must be
entered exactly as named in the
camera or the video server.

Example: Set the default image resolution to 320x240 pixels.

http://myserver/cgi-bin/operator/param?
action=update&Image.I0.Appearance.Resolution=320x240

Example: Set the maximum number of viewers to 5.

http://myserver/cgi-bin/operator/param?
action=update&Image.MaxViewers=5

5.1.2 Hard factory default

Reload factory default. All parameters are set to their factory default value.

Note: This request requires administrator access (administrator authorization).

Method: GET

Syntax:

http://<servername>/cgi-bin/admin/hardfactorydefault

5.1.3 Backup

Download a unit specific backup of all files in the folder /etc in tar format.

Note: This requires administrator access (administrator authorization).

Method: GET

Syntax:

http://<servername>/cgi-bin/admin/backup

Return:

HTTP/1.0 200 OK\r\n
Content-Type: application/x-tar\r\n
Content-Disposition: attachment; filename=backup\r\n
\r\n
<file content of backup>

5.1.4 Restore

Upload a unit specific backup previously created by the backup.

Note: This requires administrator access (administrator authorization).

Method: POST

Syntax:

http://<servername>/cgi-bin/admin/restore

The file content is provided in the HTTP body according to the format given in RFC 1867.
The body is created automatically by the browser if using HTML form with input type "file".

Example: Upload of backup, where "\r\n" has been omitted in the HTTP body.
POST /cgi-bin/admin/restore? HTTP/1.0\r\n
Content-Type: multipart/form-data; boundary=123456789\r\n
Content-Length: <content length>\r\n
\r\n
--123456789\r\n
<file content of backup>
\r\n
--123456789--\r\n

http://www.faqs.org/rfcs/rfc1867.html

5.1.5 Firmware upgrade

Upgrade the firmware version.

Note: This requires administrator access (administrator authorization).

Method: POST

Syntax:

http://<servername>/cgi-bin/admin/firmwareupgrade[?<parameter>=<value>]

with the following parameters and values

<parameter>=<value> Values Description

type=<string> normal,
factorydefault

Specifies the type of firmware upgrade.

normal = Upgrade and restore old settings.
factorydefault = Upgrade and discard all
settings.

type is by default set to normal.

The file content is provided in the HTTP body according to the format given in RFC 1867.
The body is created automatically by the browser if using HTML form with input type "file".

Example:
POST /cgi-bin/admin/firmwareupgrade?type=normal HTTP/1.0\r\n
Content-Type: multipart/form-data; boundary=oivazoivaz\r\n
Content-Length: <content length>\r\n
\r\n
--oivazoivaz\r\n
<firmware file content>
\r\n
--oivazoivaz--\r\n

http://www.faqs.org/rfcs/rfc1867.html

5.1.6 Reboot server

Reboot server.

Note: This requires administrator access (administrator authorization).

Method: GET

Syntax:

http://<servername>/cgi-bin/admin/reboot

5.2 JPEG

The requests specified in the JPEG/MJPG section are supported by those video products that
use JPEG and MJPG encoding.

5.2.1 JPEG image request

Returns an image with the default resolution and compression as defined in the system
configuration.

Method: GET

Syntax:

http://<servername>/jpg/image.jpg

Example: Request JPEG image from default camera with default resolution and
compression.

http://myserver/jpg/image.jpg

5.2.2 JPEG image (snapshot) CGI request

Request a JPEG image (snapshot) with specified properties.

Method: GET

Syntax:

http://<servername>/cgi-bin/jpg/image

product/release-dependent.

Example: Request a JPEG image .

http://myserver/cgi-bin/jpg/image.cgi

5.2.3 JPEG image response

When a JPEG image is requested, the server returns either the specified JPEG image file or
an error.

Return:

HTTP/1.0 200 OK\r\n
Content-Type: image/jpeg\r\n
Content-Length: <image size>\r\n
\r\n
<JPEG image data>\r\n

Example: Requested JPEG image.

HTTP/1.0 200 OK\r\n
Content-Type: image/jpeg\r\n
Content-Length: 15656\r\n
\r\n
<JPEG image data>\r\n

5.2.4 MJPG video request

Returns a multipart image stream with the default resolution and compression as defined in
the system configuration.

Method: GET

Syntax: Request Multipart JPEG image.

http://<servername>/video.mjpg

Example: Request JPEG image stream from camera .

http://myserver/video.mjpg

5.2.5 MJPG video response

When MJPG video is requested, the server returns a continuous flow of JPEG files. The
content type is "multipart/x-mixed-replace" and each image ends with a boundary string
<boundary>. The returned image and HTTP data is equal to the request for a single JPEG
image.

Return:

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace;boundary=<boundary>\r\n
\r\n
--<boundary>\r\n
<image>

where the proposed <boundary> is

myboundary

and the returned <image> field is

Content-Type: image/jpeg\r\n
Content-Length: <image size>\r\n
\r\n
<JPEG image data>\r\n
--<boundary>\r\n
<image>

Example: Requested JPEG image.

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace;boundary=myboundary\r\n
\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n
Content-Length: 15656\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n
Content-Length: 14978\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n
Content-Length: 15136\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
 .
 .
 .

5.2.6 MPEG-4 video request

Returns a multipart image stream with the default resolution and compression as defined in
the system configuration.

Method: GET

Syntax: Request Multipart JPEG image.

http://<servername>/video.mp4

Example: Request JPEG image stream from camera .

http://myserver/video.mp4

5.2.7 MPEG-4 video response

When MPEG-4 video is requested, the server returns a continuous flow of MPEG-4 video
streams. The content type is "multipart/x-mixed-replace" and each image ends with a
boundary string <boundary>. The returned image and HTTP data is equal to the request for a
single JPEG image.

Return:

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace;boundary=<boundary>\r\n
\r\n
--<boundary>\r\n
<image>

where the proposed <boundary> is

myboundary

and the returned <image> field is

Content-Type: image/jpeg\r\n
Content-Length: <image size>\r\n
\r\n
<JPEG image data>\r\n
--<boundary>\r\n
<image>

Example: Requested MPEG-4 image.

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace;boundary=myboundary\r\n
\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n
Content-Length: 15656\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n

http://myserver/video.mp4

Content-Length: 14978\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
Content-Type: image/jpeg\r\n
Content-Length: 15136\r\n
\r\n
<JPEG image data>\r\n
--myboundary\r\n
 .
 .
 .

5.3 PTZ

The requests specified in the PTZ section are supported by those video products that have
support for Pan/Tilt/Zoom devices.

5.3.1 PTZ set

To control the Pan, Tilt and Zoom behavior of a PTZ unit, the following PTZ control URL is
used. This URL has view access rights.

Important:
Some PTZ units automatically reduce pan and tilt movements as the zoom factor increases.
Therefore, the actual movement may be less than what is requested of these units.
The PTZ control is device-dependent. For information about supported parameters and actual
parameter values, please check the specification of the PTZ driver you intend to use. The
following table is only an overview.

Note:
The URL must follow the standard way of writing a URL, (RFC 2396: Uniform Resource
Identifiers (URI) Generic Syntax); that is, spaces and other reserved characters (";", "/", "?",
":", "@", "&", "=", "+", "," and "$") within a <parameter> or a <value> must be replaced
with %<ASCII hex>. For example, in the string My camera, the space will have to be
replaced with %20, My%20camera.

Method: GET/POST

Syntax:

http://<servername>/cgi-
bin/operator/ptzset?<parameter>=<value>[&<parameter>=<value>...]

with the following parameters and values

<parameter>=<value> Values Description

http://www.faqs.org/rfcs/rfc2396.html

camera=<int> 1, ... 1 Applies only to video servers
with more than one video
input. Selects the source
camera. If omitted, the default
camera is used.

whoami=<string> <any value> Returns the name of the
system-configured device
driver.

Absolute: Used to send the
coordinates for the point in the
image where the user clicked.
This information is then used
by the server to calculate the
pan/tilt move required to
(approximately) center the
clicked point.

center=<int>,<int>
extrem3=<int>,<int>

<x>,<y>

Relative: Used to send the
coordinates for the point in the
image where the user clicked.
This information is then used
by the server to calculate the
direction and number of
degrees to move. The number
of degrees increases with the
distance from the center of the
image to the point clicked.

imagewidth=<int> 1, ... 1 Required in conjunction with
center if the image width
displayed is different from the
default size of the image,
which is product-specific.

imageheight=<int> 1, ... 1 Needed in conjunction with
center if the image height is
different from the default size,
which is product-specific.

Absolute: Moves the device 5
degrees in the specified
direction.

move=<string> home,
up,
down,
left,
right,
upleft,
upright,
downleft,
downright

Relative: Moves the device
approx. 50-90 degrees2 in the
specified direction.

Note: home is only valid if

any home position has been
previously set with
"home=yes".

Absolute: Pans the device
relative to the (0,0) position.

pan=<float> -180.0 - 180.0

Relative: n/a

Absolute: Tilts the device
relative to the (0,0) position.

tilt -180.0 - 180.0

Relative: n/a

Absolute: Zooms the device n
steps.

zoom=<int> 1 - 9999

Relative: n/a

Absolute: Move Focus n
steps.

focus=<int> 1 - 9999

Relative: n/a

Absolute: Move iris n steps. iris=<int> 1 - 9999

Relative: n/a

Absolute: Pans the device n
degrees relative to the current
position.

rpan=<float> -360.0 - 360.0

Relative: Pans the device
approx. n degrees relative to
the current position

Absolute: Tilts the device n
degrees relative to the current
position.

rtilt=<float> -360.0 - 360.0

Relative: Tilts the device
approx. n degrees relative to
the current position.

rzoom=<int> -9999 - 9999 Absolute: Zooms the device n
steps relative to the current
position. Positive values mean
zoom in, negative values mean
zoom out.

Relative: Zooms the device
approx. n steps relative to the
current position. Positive
values mean zoom in, negative
values mean zoom out.

Absolute: Move Focus n steps
relative to the current position.
Positive values mean focus
far, negative values mean
focus near.

rfocus=<int> -9999 - 9999

Relative: Move Focus approx.
n steps relative to the current
position. Positive values mean
focus far, negative values
mean focus near.

Absolute: Move iris n steps
relative to the current position.
Positive values mean open
iris, negative values mean
close iris.

riris=<int> -9999 - 9999

Relative: Move iris approx. n
steps relative to the current
position. Positive values mean
open iris, negative values
mean close iris.

autofocus=<string> on, off Autofocus On/Off.

autoiris=<string> on, off Autoiris On/Off.

continuouspantiltmove=
<int>,<int>

-100 - 100,-100 - 100 Continuous pan/tilt motion.

Positive values mean right
(pan) and up (tilt), negative
values mean left (pan) and
down (tilt). "0,0" means stop.

Values as <pan speed>,<tilt
speed>

continuouszoommove=<int> -100 - 100 Continuous zoom motion.
Positive values mean zoom in
and negative values mean
zoom out. "0" means stop.

continuousfocusmove=<int> -100 - 100 Continuous focus motion.

Positive values mean focus
near and negative values mean
focus far. "0" means stop.

continuousirismove=<int> -100 - 100 Continuous iris motion.
Positive values mean iris open
and negative values mean iris
close. "0" means stop.

auxiliary=<string> <function name> Activates/deactivates auxiliary
functions of the device where
<function name> is the name
of the device-specific
function.

gotoserverpresetname=<string> <preset name>4 Move to the position
associated with the <preset
name>.

gotoserverpresetno=<int> 1, ... Move to the position
associated with the specified
preset position number.

gotodevicepreset=<int> <preset pos> Bypasses the presetpos
interface and tells the device
to go directly to the preset
position number <preset pos>
stored in the device, where the
<preset pos> is a device-
specific preset position
number.

bartype=<string> absolute, relative Used together with barcoord
and determines how the bar
shall be interpreted. If
"absolute", the endpoints of
the bar correspond to the
current limits. If "relative", the
behavior is device-dependent.
The default interpretation is
"absolute" for panbar, tiltbar
and zoombar and "relative"
for focusbar and irisbar.

barcoord=<int>,<int> <x>,<y> Used in conjunction with
panbar, tiltbar, zoombar,
focusbar or irisbar, to send
coordinates to the server.

panbar=<int>,<string> <length>,<alignment> <length> is the length of the

bar in pixels, which is needed
in order to calculate the center
of the bar.

<alignment> is one of the
strings "horisontal" or
"vertical".

The alignment string
determines if the x
(horisontal) or the y (vertical)
coordinate from barcoord is
used, i.e. if the bar is
horisontal; use "horisontal"
and if the bar is vertical; use
"vertical" as alignment.

tiltbar=<int>,<string> <length>,<alignment> <length> is the length of the
bar in pixels, which is needed
in order to calculate the center
of the bar.

<alignment> is one of the
strings "horisontal" or
"vertical".

The alignment string
determines if the x
(horisontal) or the y (vertical)
coordinate from barcoord is
used, i.e. if the bar is
horisontal; use "horisontal"
and if the bar is vertical; use
"vertical" as alignment.

zoombar=<int>,<string> <length>,<alignment> <length> is the length of the
bar in pixels, which is needed
in order to calculate the center
of the bar.

<alignment> is one of the
strings "horisontal" or
"vertical".

The alignment string
determines if the x
(horisontal) or the y (vertical)
coordinate from barcoord is
used, i.e. if the bar is

horisontal; use "horisontal"
and if the bar is vertical; use
"vertical" as alignment.

focusbar=<int>,<string> <length>,<alignment> <length> is the length of the
bar in pixels, which is needed
in order to calculate the center
of the bar.

<alignment> is one of the
strings "horisontal" or
"vertical".

The alignment string
determines if the x
(horisontal) or the y (vertical)
coordinate from barcoord is
used, i.e. if the bar is
horisontal; use "horisontal"
and if the bar is vertical; use
"vertical" as alignment.

irisbar=<int>,<string> <length>,<alignment> <length> is the length of the
bar in pixels, which is needed
in order to calculate the center
of the bar.

<alignment> is one of the
strings "horisontal" or
"vertical".

The alignment string
determines if the x
(horisontal) or the y (vertical)
coordinate from barcoord is
used, i.e. if the bar is
horisontal; use "horisontal"
and if the bar is vertical; use
"vertical" as alignment.

speed=<int> 1 - 100 Sets the head speed of the
device that is connected to the
specified camera.

imagerotation=<int> 0, 90, 180, 270 If PTZ command refers to an
image stream that is rotated
differently than the current
image setup, then the image
stream rotation must be added
to each command with this

parameter to allow the server
to compensate.

query=<string> speed,
position,
presetposcam,
presetposall

Returns the current parameter
values.

info=<int> 1 Returns a description of
available PTZ commands.

No PTZ control is performed.

1 Product-dependent. Check the product's specification.
2 Actual values are device driver-specific.
3 Obsolete.
4 <preset name> is a string with a maximum of 31 characters, ~ is not allowed.

Example: Request information about which PTZ commands are available for camera 1.

http://myserver/cgi-bin/operator/ptzset?info=1&camera=1

5.3.2 PTZ configuration

Configure PTZ preset positions..

Note: This request requires operator access (operator authorization).

Method: GET/POST

Syntax:

http://<servername>/cgi-bin/operator/ptzconfig?
<parameter>=<value>[&<parameter>=<value>...]

with the following parameters and values

<parameter>=<value> Values Description

camera=<int> 1, ... 1 Applies only to video servers with
more than one video input. Selects
the source camera. If omitted, the
default camera is used.

setserverpresetname=<string> <preset Associates the current position to

name>1 <preset name> as a preset position
in the server.

setserverpresetno=<int> 1, ... Saves the current position as a
preset position number in the
server.

home=<string> yes Makes the current position the
home position for the camera. Used
with setserverpresetname
or setserverpresetno.

removeserverpresetname=<string> <preset
name>1

Removes the specified preset
position associated with <preset
name>.

removeserverpresetno=<int> 1, ... Removes the specified preset
position.

setdevicepreset=<int> <preset pos> Bypasses the presetpos interface
and tells the device to save its
current position as preset position
<preset pos> directly in the device,
where <preset pos> is a device-
specific preset position number.

1 <preset name> is a string with a maximum of 31 characters, ~ is not allowed.

5.4 Motion Detection

To be able to define Motion Detection parameters, the video product must have built-in
Motion Detection.
A motion detection window is defined by several parameters. The motion detection
parameters reside within a dynamic parameter group. Accordingly it is possible to list and
update the motion detection parameters with param.cgi, The dynamic motion detection
parameter groups are divided into sub groups of the main motion parameter group, i.e.
Motion.M<group number>.<parameter name>. group number is a unique number which is
stated when a new dynamic parameter group is created, i.e. Motion.M3.

5.4.1 Update the Motion Detection parameters

Example: Update the parameters for an existing Motion Detection window.
http://myserver/cgi-bin/operator/param?action=update&Motion.M1.Top=1500
&Motion.M1.Bottom=8000

5.4.2 List the Motion Detection parameters

Example: List the Motion.M1 and Motion.M2 parameters.
http://myserver/cgi-bin/operator/param?
action=list&group=Motion.M1,group=Motion.M2

Example: List all Motion Detection windows.
http://myserver/cgi-bin/operator/param.cgi?action=list&group=Motion

5.5 I/O

The requests specified in the I/O section are supported by those products that have
Input/Output connectors.

5.5.1 I/O control

5.5.1.1 Input

Digital Input

Method: GET

Note: This request requires administrator access (administrator authorization).

Syntax:

http://<servername>/cgi-bin/admin/input?
<parameter>=<value>[&<parameter>=<value>...]

with the following parameters and values

<parameter>=<value> Values Description

check=<int>[,<int>, ...] <id1>[,<id2>, ...] 1 Returns the status (1 or 0) of one or
more inputs numbered id1 ,id2,

checkactive=<int>[,<int>, ...] <id1>[,<id2>, ...] 1 Returns the status (active or
inactive) of one or more inputs
numbered id1,id2,

monitor=<int>[,<int>, ...]2 <id1>[,<id2>, ...] 1 Returns a multipart stream of

"check" inputs (see return
description below).

1 Number of inputs may differ for different cameras and video servers. See the product's
specification.
2 Support for this parameter is product/release-dependent.

Return: "monitor", i.e., multipart "check" parameter

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace;boundary=<boundary>\r\n
\r\n
--<boundary>\r\n
<monitor data>

where the proposed boundary <boundary> is

ioboundary

and the <monitor data> part is

Content-Type: text/plain\r\n
\r\n
<check data>
--<boundary>\r\n

and <check data> is

IO<n>:<action char>\r\n

and <n> is the I/O port number and <action char> is the action character described in the
table above.
Note: The output can contain extra blank lines, i.e., extra \r\n within the sections.

Example: Monitor data on input ports 1, 2, 3, and 4.

http://myserver/cgi-bin/input?monitor=1,2,3,4

Example: Monitor data on input port 1.

HTTP/1.0 200 OK\r\n
Content-Type: multipart/x-mixed-replace; boundary=ioboundary\r\n
\r\n
\r\n
\r\n
\r\n
--ioboundary\r\n
Content-Type: text/plain\r\n
\r\n
IO0:/\n
\r\n
\r\n
--ioboundary\r\n

Content-Type: text/plain\r\n
\r\n
IO0:H\n
\r\n
--ioboundary\r\n
Content-Type: text/plain\r\n
\r\n
\r\n
IO0:\\n
\r\n
\r\n
--ioboundary\r\n
Content-Type: text/plain\r\n
\r\n
\r\n
\r\n
\r\n
--ioboundary\r\n
Content-Type: text/plain\r\n
\r\n
\r\n
 .
 .
 .

5.5.1.2 Output

Digital Output

Method: GET

Note: This request requires administrator access (administrator authorization).

Syntax:

http://<servername>/cgi-bin/admin/output?
<parameter>=<value>[&<parameter>=<value>...]

with the following parameters and values

<parameter>=<value> Values Description

check=<int>[,<int>, ...] <id1>[,<id2>, ...] 1
Returns the status (1 or 0)
of one or more outputs
numbered id1 ,id2,

checkactive=<int>[,<int>, ...] <id1>[,<id2>, ...] 1

Returns the status (active or
inactive) of one or more
outputs numbered
id1 ,id2,

monitor=<int>[,<int>, ...] 2 <id1>[,<id2>, ...] 1
Returns a multipart stream
of "check" outputs (see
return description below).

action=<string> [<id>1]:<a>[<wait> <a> ...] Sets the output relay <id>
active or inactive and waits
<wait> milliseconds. Note
that only one output relay
can be
activated/deactivated per
request.

<id> = Output number. If
omitted, output 1 is
selected.

<a> = Action character: / or
\
/ = active, \ = inactive.

<wait> = Delay in
milliseconds.

1 Number of outputs may differ for different cameras and video servers. See the product's
specification.
2 Support for this parameter is product/release-dependent.

Example: Set output 1 active.

http://myserver/cgi-bin/admin/output?action=1:/

Example: Set two 300 ms pulses with 500 ms delay between the pulses on output 1.

http://myserver/cgi-bin/admin/output?action=1:/300\500/300\

Example: Wait 1 second before setting output 1 active.

http://myserver/cgi-bin/admin/output?action=1:1000/

5.6 Audio data transmit

Transmit a Singlepart/Multipart Audio data stream.

Method: POST

Syntax:

http://<servername>/cgi-bin/view/transmit

There are no valid parameters and values.

Example: Singlepart/Multipart Audio data

http://myserver/cgi-bin/view/transmit

	TABLE OF CONTENTS
	DOCUMENT HISTORY
	1 OVERVIEW
	1.1 Product and firmware versions

	2 REFERENCES
	3 DEFINITIONS
	3.1 General notation
	3.1.1 General abbreviations
	3.1.2 Style convention
	3.1.3 General CGI URL syntax and parameters
	3.1.4 Parameter value convention

	4 INTERFACE SPECIFICATION
	4.1 Server responses
	4.1.1 HTTP status codes

	5 API GROUPS
	5.1 General
	5.1.1 Update and list parameters and their values
	5.1.1.1 List parameters
	5.1.1.2 List output format
	5.1.1.3 Update parameters

	5.1.2 Hard factory default
	5.1.3 Backup
	5.1.4 Restore
	5.1.5 Firmware upgrade
	5.1.6 Reboot server
	5.2 JPEG
	5.2.1 JPEG image request
	5.2.2 JPEG image (snapshot) CGI request
	5.2.3 JPEG image response
	5.2.4 MJPG video request
	5.2.5 MJPG video response
	5.2.6 MPEG-4 video request
	5.2.7 MPEG-4 video response
	5.3 PTZ
	5.3.1 PTZ set
	5.3.2 PTZ configuration
	5.4 Motion Detection
	5.4.1 Update the Motion Detection parameters
	5.4.2 List the Motion Detection parameters
	5.5 I/O
	5.5.1 I/O control
	5.5.1.1 Input
	5.5.1.2 Output

	5.6 Audio data transmit

